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This paper gives the equations for the use of fast Fourier

transformations in individual atomic anisotropic re®nement.

Restraints on bonded atoms, on the sphericity of each atom

and between non-crystallographic symmetry related atoms are

described. These have been implemented in the program

REFMAC and its performance with several examples is

analysed. All the tests show that anisotropic re®nement not

only reduces the R value and Rfree but also improves the ®t to

geometric targets, indicating that this parameterization is

valuable for improving models derived from experimental

data. The computer time taken is comparable to that for

isotropic re®nements.
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1. Introduction

Re®nement of crystal structures can be subdivided into four

fundamental steps. These are: (i) choice of residual, (ii)

parameterization of the re®ned model, (iii) minimization

method for the residual against the current parameters and

(iv) handling and use of prior knowledge. It has previously

been shown that using a ÿlog likelihood function for the

residual can give better results than classical least-squares

(Pannu & Read, 1996; Murshudov et al., 1997). The most

appropriate parameterization of the model depends on the

data available, the stage of re®nement and the amount and

treatment of prior information. Again, the choice of the

minimization method depends on all the above and on the

residual chosen. At early stages of least-squares re®nement it

has been established that the use of simulated annealing with

molecular dynamics considerably improves the re®nement

behaviour and increases the radius of convergence (BruÈ nger,

1992). At later stages, minimization methods which use ®rst

and second derivatives (or approximations to them) increase

the rate of convergence (Fletcher, 1981). Preliminary tests

show that with a maximum-likelihood residual the use of ®rst

and second derivatives even at an early stage is valuable.

In principle, there is information from the minimization

procedure which can also help to guide the parameterization.

For this, all second derivatives of the residual must be calcu-

lated and the eigenvalue and eigenvectors of this matrix

derived. From an analysis of the eigenvalues the model can be

reparameterized in general terms (Watkin, 1988, 1994; Ten

Eyck, 1996; Cowtan & Ten Eyck, 1999).

Handling of prior knowledge is of prime importance, and

there are several aspects where improvements could be made.

For instance, commonly used restraint residuals either use

second-order approximations to the energy functions or

assume normal distributions about some restraint mean, which

is not always appropriate. Many structural studies aim to
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describe details of the mechanism of action of the macro-

molecule, which are probed by the incorporation of new

inhibitors or pseudo-substrates. To examine the systems

properly, it is essential that the new dictionary entries required

to describe the inhibitor geometry take into account the

underlying chemistry and are easy to formulate.

The parameterization of the current model is an essential

step for all re®nement programs. Most popular programs

(X-PLOR, BruÈ nger, 1992; TNT, Tronrud et al., 1987;

PROLSQ, Konnert & Hendrickson, 1980; REFMAC,

Murshudov et al., 1997) can re®ne individual atomic positions

as well as overall or individual isotropic B values (three or four

parameters per atom). X-PLOR can further reduce the

number of parameters by re®ning in torsion-angle space

(BruÈ nger & Rice, 1997), but since the torsion angles of a

model are highly correlated this may lead to instability.

SHELXL (Sheldrick, 1995) and RESTRAIN (Driessen et al.,

1989) can re®ne individual anisotropic U values (nine para-

meters per atom); both these programs use classical normal

equations formulated in reciprocal space to describe the least-

squares residuals (Rollett, 1968).

As more powerful data-collection techniques have become

available, there has been a rapid increase in the number of

macromolecular crystallographic data sets collected at high or

even atomic resolution (Dauter et al., 1997). This puts extra

requirements on re®nement programs, which should be able

both to re®ne initial structures to reasonable R values and

then allow reparameterization of the model to exploit the data

quality. At high resolution this requires that the model should

be described with individual atomic anisotropic parameters.

Finally, the re®nement program should be able to assess the

reliability of the resultant model (e.g. assign standard uncer-

tainties for all the parameters).

A second class of problems now requiring re®nement

algorithms are those where reasonable data have been

collected from crystals of lower quality. Here the molecules

often display high mobility which can be described using

translation±libration±screw (TLS; notation is given in Table 1)

parameters (Schomaker & Trueblood, 1968). This means that

programs should be able to re®ne such overall thermal para-

meters of the molecule(s). Once derivatives for the individual

anisotropic U values have been calculated, those for the TLS

parameters can be deduced by application of the chain rule.

One potential application of TLS re®nement is in applying

NCS restraints or constraints, as different copies of the

molecule in the asymmetric unit may well have different

overall thermal parameters. This may also be important in

multicrystal re®nement and/or averaging.

If anisotropic re®nement could be carried out without using

excessive computing resources, it would certainly be used

much more routinely. Cruickshank (1956) gave equations for

re®nement using Fourier methods (Booth, 1946; Cochran,

1948; Cruickshank, 1952, 1956). Here, we give equations for

using a real-space Fourier approximation to carry out indivi-

dual anisotropic re®nement for a wide range of residuals and

in particular for its application in maximum-likelihood

re®nement.

2. Sources of anisotropy of atoms

Several factors contribute to apparent atomic anisotropy. The

crystal itself (except in a cubic space group) is in general an

anisotropic ®eld, so it is to be expected that the data collected

from it may exhibit overall anisotropy. Freezing and/or addi-

tion of substrates will usually change the anisotropy of the

crystal, in general increasing it. This can be corrected by

re®nement of an overall anisotropic scale factor respective to

the crystal axes, in general requiring the addition of ®ve extra

parameters. The correction is not necessarily positive de®nite

as it re¯ects differences between overall thermal parameters

of the observed and calculated structure factors. The results of

this are often substantial, reducing the R value and Rfree by

several percent, as well as improving the ®t to the geometric

restraints (Sherif & Hendrickson, 1987; Murshudov et al.,

1998).

A second source of anisotropy is the movement of whole

molecules as rigid bodies within the crystal lattice. This can be

described by TLS parameters (20 more per molecule) inde-

pendent of the crystal form. RESTRAIN (Moss et al., 1996) is

able to evaluate these, and the correction has been shown to

be valuable in some situations.

A third source of anisotropy is vibration along torsion

angles. In principle, this might be described by re®ning the

torsion angles themselves and estimating their displacement

parameters. However, there are problems with this since these

parameters are highly correlated and such re®nement may be

sensitive to small perturbations of one or several of the

parameters. It may be better to deduce the displacement

parameters of the torsion angles from the individual aniso-

tropic atomic U values.

To summarize, the observed atomic anisotropic thermal

parameter can be written as

Uatom;overall � Ucrystal �UTLS �Utorsion �Uatom; �1�

where Uatom,overall is the overall anisotropic thermal para-

meter, Ucrystal is the contribution of crystal anisotropy, UTLS is

the contribution of model anisotropy (TLS), Utorsion is the

contribution of motion about the torsion angle and, ®nally,

Uatom is the contribution of the atomic anisotropy along and

across covalent bonds. Cruickshank (1956) noted that

removing Ucrystal made the re®nement of individual aniso-

tropic U values more stable, and it seems reasonable to apply

these simple corrections to remove the modes related to

Ucrystal and UTLS. At present, REFMAC only corrects for

Ucrystal before re®ning Uatom. The derived atomic anisotropy is

thus the sum of UTLS, Utorsion and Uatom.

Care should be taken in the re®nement of different

contributions, as they are highly correlated. To overcome this

dif®culty they can be re®ned in successive stages, i.e. ®rst

re®ne Ucrystal, second UTLS, third Utorsion and ®nally Uatom.

Alternatively, re®ne Ucrystal, UTLS and displacement para-

meters along the internal degrees of freedom, as described by

Diamond (1990).



3. Restraints on anisotropic U tensors

In the current implementation, three types of restraints on

anisotropic U values are allowed. The ®rst are similarity

restraints between bonded atoms. If U1 and U2 are the

corresponding anisotropic tensors for bonded atoms 1 and 2,

then the similarity restraint requires that the difference

between U1 and U2 should be minimum. There are a number

of different ways of de®ning the distance between two

matrices; here, we use the following de®nition known as the L2

norm in matrix space,

d2
bond�U1;U2� � P3

i;j�1

�U1
ij ÿ U2

ij�2: �2�

For the vector form of U de®ned in Table 1 this becomes

d2
bond�u1; u2� �P3

i�1

�u1
i ÿ u2

i �2 � 2
P6

i�4

�u1
i ÿ u2

i �2: �3�

Hence, restraints on the bonded atoms means that the

term wu;bond

P
bonds d2�u1; u2� is added to the residual to be

minimized, where wu;bond is a weight

dependent on the bond type.

Secondly, sphericity restraints

prevent atoms from becoming too

elliptical; in other words, the aniso-

tropic terms are restrained to their

isotropic equivalent. In an ortho-

gonal coordinate system, this means

that all diagonal terms Uii are

restrained to Uiso and the non-diag-

onal terms to zero,

d2
sphericity�u� �

P3

i�1

�ui ÿ Uiso�2

� 2
X6

i�4

u2
i ;

�4�

where Uiso � �u1 � u2 � u3�=3 in the

orthogonal coordinate system.

`Rigid-bond' restraints, as

suggested by Rollett (1970) and

Hirshfeld (1974), have also been

implemented. The idea behind these

is that atomic motions along bonds

are minimal. [This implies that

jU1;l ÿU2;lj2 should be minimized,

where U1;l and U2;l are the projec-

tions of the anisotropic motion of

atoms 1 and 2 linked by a covalent

bond l to that bond; see Hirshfeld

(1974) for details.]

Only rigid-bond restraints are

thought to be physically reasonable.

Other restraints help to stabilize the

re®nement, but are rough approx-

imations to the proper probability

distribution, which relies on the conditional distribution of

geometric parameters (e.g. bond distances, angles, dihedral

angles) when the positional and thermal parameters for each

atom are known.

The derivatives of these residuals follow from application of

the chain rule. Similar restraints have been implemented in

SHELXL (Sheldrick, 1995).

To ensure that the U tensor is positive de®nite at each cycle

of re®nement, its eigenvalues and eigenvectors are calculated;

small or negative eigenvalues are reset to a prede®ned small

positive value and the anisotropic U is recalculated with the

new eigenvalues and the old eigenvectors.

4. Restraints on non-crystallographic symmetry

If there are N copies of an atom with position xi and aniso-

tropy Ui, related by the transformation matrices Ri; i � 1;N

(R1 � I, the identity matrix), then the restraints used for the

positional parameters are
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Table 1
Notation.

|Fo| = |Fh
o| Experimental structure-factor amplitude.

|Eo| Normalized experimental structure-factor amplitude.
�Fo = �jFjexp Experimental uncertainty in structure-factor amplitude.
s Vector of position in reciprocal space. s = jsj = 2 sin �=�.
" Multiplicity of diffracting plane.
f �k; s� Form factor of kth atom in a ®ve Gaussian approximation.

f �k; s� =
P5

k�1 ak exp�ÿbks2=4�, b5 = 0.
U = �Uij�; i � 1; 3; j � 1; 3 Anisotropic displacement tensor. When used to describe

atomic thermal parameter. It must be positive de®nite, i.e.
de®ne a `thermal ellipsoid'.

Uiso Isotropic equivalent of the anisotropic U tensor. In an
orthogonal system Uiso = �u1 � u2 � u3�=3.

B = 8�2U U is the mean-square amplitude of vibration.
u = �ui� Vector representation of an anisotropic tensor where ui = Uii,

u4 = U12 = U21, u5 = U13 = U31, u6 = U23 = U32:
U� = G�UG� Reciprocal-space anisotropic U tensor, where G� = Gÿ1.

Elements of the metric tensor Gij = aiaj where ai, aj are the
vectors de®ning the coordinate system used. In an
orthogonal system G = I, the identity matrix. In the cell
system ai and aj are the cell axes.

V = Uÿ1 = �Vij�; i � 1; 3; j � 1; 3 Inverse of U.
k exp�ÿhU�crystalh

T� Crystallographic scale factor. Here, Ucrystal is not required to
be positive de®nite.

h = (h1; h2; h3) Re¯ection index of the re¯ecting plane.
Fc = jFcj exp��'c� = k exp�ÿhU�crystalh

T �
�Patoms; kf �k; s� exp�ÿhU�atom; khT�
� exp�2��hxk�

Calculated structure factor.

�N =
PNatom

k�1 f 2�k; s� Summed over all atoms in the crystal.
�P = �P�s� =

PNP
atom

k�1 f 2�k; s� For partial structure.
Ec = jEcj exp��'c� Normalized calculated structure factor.
�' Phase error of current model.
�x Error in positional parameters.
D hcos 2�s�xi
�A ��p=�N�1=2

D
m = �hcos �'i2 � hsin �'i2�1=2 Figure of merit of phases. For uniform prior phase informa-

tion m = hcos �'i = I1�X�=I0�X� for acentric and tanh�X�
for centric re¯ections, respectively.

X = 2�jEojjEwcj�=�2�2
Eo � �A;wc�

or �jEojjEwcj�=��2
Eo � �A;wc�

For acentric and centric re¯ections, respectively.

I0�X� and I1�X� Zero-order and ®rst-order modi®ed Bessel functions of the
®rst kind.

TLS Translation±libration±screw parameters of the overall
thermal displacement of the molecule.

NCS Non-crystallographic symmetry.
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d2
x;NCS � wx;NCS

PN
i�1

�Rixi ÿ hRxi�2

hRxi �
�PN

i�1

Rixi

�
=N; �5�

where wx;NCS is the weight on the positional parameters for

this particular atom.

For anisotropic U values,

d2
U;NCS � wU;NCS

PN
i�1

�RU
i Ui ÿ hRUi�2

hRUi �
�XN

i�1

RU
i Ui

�
=N �6�

where wU;NCS is the weight on the thermal parameters for this

particular atom and RU
i is the transformation matrix corre-

sponding to Ri, described in Appendix B. Before applying any

NCS restraint to the atomic U values, the overall U value of

each molecule related to TLS should be removed. Again, the

derivatives of this residual are derived by the chain rule.

5. Implementation and examples

Equations (13) and (15) for the gradient and Hessian terms for

the Uij calculations are derived in Appendix A and have been

implemented in the program REFMAC. For the derivative

calculation, fast Fourier transformation (FFT) routines are

used which means each cycle is fast. The relative times for

isotropic and anisotropic re®nement are given in Tables 2 and

3. The only time-consuming part of the calculation is the

convolution needed for the Hessian terms (15). The restraints

described above have all been implemented, although the

equations for NCS have not yet been fully tested. The version

of REFMAC incorporating anisotropic U-value re®nement is

available from the CCP4 suite (Collaborative Computational

Project, Number 4, 1994).

In the examples given below, the models have previously

been re®ned to convergence using isotropic temperature

factors. Before beginning these tests, H atoms were added in

their riding positions using the CCP4 program HGEN

(Collaborative Computational Project, Number 4, 1994). 5%

of the re¯ections were chosen for Rfree and �A estimation.

Both isotropic and anisotropic re®nement cycles were started

from the same coordinate sets to compare the speed and the

overall statistics, and the same weights on geometric para-

meters and relative weight between X-ray and geometry were

applied. Neither manual rebuilding nor automatic water-

addition procedures were carried out. The re®nement was

performed using an SGI O2 with R5000 processor and 128 MB

memory. For the four isomorphous catalase examples the

same re¯ection set was used for Rfree and �A estimation. For

both individual atomic isotropic and anisotropic re®nement,

the overall anisotropic scale value was re®ned and applied to

Fc. The apparent difference between the anisotropic Ucrystal for

the two re®nements arises from the high correlation between

atomic and crystallographic displacement parameters. It may

be better to ®x the anisotropic Ucrystal after isotropic re®ne-

ment and then to re®ne only the atomic anisotropic U values.

All examples were re®ned without rigid-bond restraints.

Using rigid-bond restraints for these examples did not make a

signi®cant difference (results not shown).

5.1. Catalase at 1.96, 1.8, 1.5 and 0.89 AÊ resolutions

The structure of catalase from the bacterium Micrococcus

lysodeikticus (MLC) has previously been determined

(Murshudov et al., 1992). Here, we used four independent data

Table 2
Effect of anisotropic re®nement.

Space group is P42212. d, highest resolution for this data set. I, data from frozen crystals soaked in peracetic acid solution; II, data from crystals soaked in NADPH
solution; III, data from room-temperature native crystals; IV, data from frozen native crystals. Iso, isotropic re®nement; Aniso, anisotropic re®nement. Nrefs,
number of re¯ections included; Npars, number of parameters. N = number of cycles for I and II, the H atoms and VDW contact list was only generated once
followed by ®ve cycles of minimization; for III and IV the procedure was repeated. R.m.s. bond, root-mean-square deviation from ideal bond lengths. For this space
group Ucrystal;11 = Ucrystal;22, Ucrystal;12 = Ucrystal;13 = Ucrystal;23 = 0. W = weight between X-ray and geometric terms of minimized residual based on the comparison of the
traces of the second derivative matrices.

(a) Re®nement statistics and comparison of speeds for isotropic and anisotropic re®nements

Data set d Type W R value (%) Rfree (%) Nrefs Npars R.m.s. bond (AÊ ) CPU (min) N

I 1.96 Iso 1 15.6 20.7 41377 4 � 4718 0.016 11.2 5
1.96 Aniso 1 13.7 20.1 41377 9 � 4718 0.013 26.7 5

II 1.8 Iso 2 12.1 15.3 51955 4 � 4701 0.016 15 5
1.8 Aniso 2 10.7 14.7 51955 9 � 4701 0.014 28.7 5

III 1.5 Iso 4 11.7 14.0 90574 4 � 4632 0.019 2 � 24.5 2 � 5
1.5 Aniso 4 9.2 12.1 90574 9 � 4632 0.012 2 � 37.8 2 � 5

IV 0.89 Iso 4 16.5 17.2 433749 4 � 4632 0.012 2 � 115 2 � 5
0.89 Aniso 4 11.6 12.3 433749 9 � 4632 0.008 2 � 147.5 2 � 5

(b) Crystallographic U values for isotropic and anisotropic re®nements

Ucrystal,11 Ucrystal,33

I Iso ÿ0.0441 0.0874
Aniso ÿ0.0486 0.0962

II Iso ÿ0.0148 0.0293
Aniso ÿ0.0175 0.0348

III Iso ÿ0.0048 0.0094
Aniso ÿ0.0018 0.0035

IV Iso ÿ0.0070 0.0140
Aniso ÿ0.0103 0.0205



sets of different complexes or at different temperatures for

this enzyme (Table 2). Table 2(a) shows that the gain from

anisotropic re®nement, as indicated by the fall in the Rfree

value, is greatest at highest resolution. The RASTEP (Merritt

& Bacon, 1997) plot of the haem group with proximal Tyr343

and distal haem ligands shows the likely motion of the haem

and surrounding atoms during the reaction observed in the

1.96 AÊ complex structure (Fig. 1). Details of these and other

structural features will be discussed elsewhere.

5.2. RNAase Sa3 1.7 AÊ

Re®nement of this structure was dif®cult (SevcÏõÂk, personal

communication), probably because of substantial internal

motion of the molecule. The isotropic re®nement converged

with the unusually high R value and Rfree of 22.6 and 25.8%,

respectively, and further minimization was not possible. In

addition, the geometric parameters were not ideal. Aniso-

tropic re®nement rapidly reduced the R value and Rfree to 18.6

and 22.8%, respectively (Table 3). The overall crystallographic

anisotropic U values of the Sa3 crystal for isotropic re®nement

were Ucrystal;11 = Ucrystal;22 =ÿ0.0196 and Ucrystal;33 = 0.0372, and

for anisotropic re®nement were Ucrystal;11 = ÿ0.0285 and

Ucrystal;33 = 0.0539. (The crystal symmetry requires that the off-

diagonal terms are equal to zero.)

6. Conclusions and future developments

Re®nement of individual anisotropic U values in all examples

shown here improves the crystallographic R value and Rfree as

well as the ®t to geometric targets. The difference densities

also became cleaner (less noisy). All these factors show that

anisotropic thermal parameter re®nement is essential in

derivation of a good model from given experimental data.

Intensive tests (data not shown) show that for most data sets

with resolution higher than 2 AÊ , re®nement of individual U
values improves the R value, Rfree and the ®t to geometric

targets.

This re®nement of anisotropic U values using FFTs opens

new perspectives. Firstly, it will have a large impact on low-

resolution re®nement, as the overall thermal movement of the

whole molecule(s) or domain(s) can be a substantial factor

contributing to the quality of diffraction. Correcting for this

will increase the power of non-crystallographic symmetry

restraints.

Once individual anisotropic U values are calculated, the

mode of motion related to torsion angles could be removed by

using information about macromolecular geometry (this has

been used for normal-mode re®nement by Kidera & Go,

1992). This would mean that (a) information about the

internal motion of macromolecules would be available and (b)

U values along and across bonds could be extracted.

However, anisotropic re®nement

needs to be carried out with care. Usually

it is applied at high or atomic resolutions

and in the late stages of re®nement, when

the error associated with the coordinates

is comparable to that associated with the

experimental data. The intensity-based

likelihood function (Pannu & Read,

1996) or the Gaussian approximation to it

(Murshudov et al., 1997) can then be

applied. At these resolutions, anomalous

scatterers in the crystal may have an

important role and the shape of the

likelihood function will have to be

changed to take this into account.

Although the experimental jFo���j and

jFo�ÿ�j could be considered as indepen-

dent measurements, they are not repre-

sentative of independent random

variables.

APPENDIX A
Equations for the re®nement of the
anisotropic thermal parameters

Let us assume that the residual used for

re®nement has the form

L �P
h

Lh�x;U� �P
h

Lh; �7�
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Figure 1
(a) The thermal ellipsoids for the haem group, proximal Tyr343 and two distal waters of the native
MLC structure re®ned against 1.5 AÊ room-temperature data; (b) comparison of these atoms
between native (red) and complexed MLC (green). The shifts of Fe and water atom sites in (b)
correlate with the orientations of the thermal ellipsoides in (a). Note: no H atoms were added for
haem atoms so their apparent anisotropy re¯ects both the absence of H atoms and real anisotropic
motion.
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where Lh depends only on the re¯ection with index h =

�h1; h2; h3�.
In principle, this form of residual is needed for the second

derivative matrix (see Murshudov et al., 1997). Model para-

meters are involved through structure factors,

Fh � Ah � �Bh �
P

atoms

g�n; s� exp�2��hr�n��; �8�

where

g�n; s� � f �n; s� exp�ÿ2�2
P

hihjU
�
ij �n��

� f �n; s� exp�ÿ2�2hU��n�hT �: �9�
f �n; s� is the form factor of the nth atom (described by the ®ve-

Gaussian approximation), U��n� is the reciprocal-space

version of the anisotropic tensor for the nth atom. For

convenience the subscript will be dropped.

The gradient of the residual will then have the form

@L

@xi�n�
�P�

@L

@Ah

ÿ � @L
@Bh

�
2��hig�n; s� exp�2��r�n�h�;

@L

@U�ij �n�
�P�

@L

@Ah

ÿ � @L
@Bh

�
�2�2��ÿhihj�g�n; s�

� exp�2��r�n�h�; �10�
where r�n� = �x1; x2; x3��n�.

For the second derivatives, the H1 contribution (as de®ned

by Agarwal, 1978, and used by Murshudov et al., 1997) is

@2L

@xi�n�@xj�m�
� 1

2

P�
@2L

@A2
h

� @
2L

@B2
h

�
� �2��2hihjg�n; s�g�m; s�
� expf2��h�r�n� ÿ r�m��g;

@2L

@U�ij �n�@U�kl�m�
� 1

2

P�
@2L

@A2
h

� @
2L

@B2
h

�
� �4�4�hihjhkhlg�n; s�g�m; s�
� expf2��h�r�n� ÿ r�m��g;

@2L

@xi�n�@U�kl�m�
� ÿ 1

2

P�
@2L

@A2
h

� @
2L

@B2
h

�
� �4�3��hihkhlg�n; s�g�m; s�
� expf2��h�r�n� ÿ r�m��g: �11�

The contribution of other terms is small compared with that of

H1. These equations can be used to derive the necessary

derivatives of the minimized residual. For application it is

convenient to write it in the following form [(10) could be

written in the same manner],

@2L

@xi�n�@xj�m�
� P

hemisphere

�
@2L

@A2
h

� @
2L

@B2
h

�
� �2��2hihjg�n; s�g�m; s�
� cosf2�h�r�n� ÿ r�m��g;

@2L

@U�ij �n�@U�kl�m�
� P

hemisphere

�
@2L

@A2
h

� @
2L

@B2
h

�
� �4�4�hihjhkhlg�n; s�g�m; s�
� cosf2�h�r�n� ÿ r�m��g;

@2L

@xi�n�@U�kl�m�
� P

hemisphere

�
@2L

@A2
h

� @
2L

@B2
h

�
� �4�3�hihkhlg�n; s�g�m; s�
� sinf2�h�r�n� ÿ r�m��g: �12�

(10) and (11) can be written in terms of a convolution,

@L

@xi�n�
� F

�
@L

@Ah

� � @L
@Bh

�
� @��n�
@xi�n�

;

@L

@Uij�n�
� F

�
@L

@Ah

� � @L
@Bh

�
� @��n�
@Uij�n�

; �13�

where � is the electron density generated by the atom n, using

the form factor expressed as the sum of Gaussians,

��n; x� � P5

ig�1

�ig
�n; x�; �14�

where �ig
is a Gaussian with a mean at the atomic position r�n)

and an uncertainty Uig
�n� = Uform;ig

I + U. U is the temperature-

factor component and Uform;ig
I is a matrix representation of

the Uigth term of the form factor of the nth atom:

@2L

@xi�n�@xj�m�
� ÿ 1

2
F
�
@2L

@A2
h

� @
2L

@B2
h

�
� @2�0�nm�
@xi�n�@xj�m�

;

@2L

@Uij�n�@Ukl�m�
� 1

2
F
�
@2L

@A2
h

� @
2L

@B2
h

�
� @2�0�nm�
@Uij�n�@Ukl�m�

;

@2L

@Ukl�m�@xi�n�
� ÿ 1

2
F
�
@2L

@A2
h

� @
2L

@B2
h

�
� @2�0�nm�
@xi�n�@Ukl�m�

;

�15�
where * indicates a convolution, F is a Fourier transformation

and �0�nm� is the convolution of atoms n and m; the sum of Ng

Gaussians (15 for convolution of an atom with itself and 25 for

convolution of different atoms; Agarwal, 1978),

�0�nm; x� � ��n; x� � ��m; x� � PNg

ig�1

�ig
�nm; x�: �16�

The reciprocal-space anisotropic tensor U� and its real-space

equivalent are related by the metric tensor (U � GU�G).

Table 3
Effect of anisotropic re®nement of RNAse Sa3 at 1.7 AÊ resolution.

Space group is P41212. Weighting schemes for isotropic and anisotropic
re®nement were the same (W = 0.7).

Isotropic Anisotropic

R value (%) 22.8 2 � 5
Rfree (%) 25.8 22.8
Number of re¯ections 9790 22.8
Number of parameters 4 � 822 9 � 822
R.m.s. bond (AÊ ) 0.022 0.013
CPU (s) 2 � 297 2 � 423
Number of cycles 2 � 5 2 � 5



In the following discussion of the derivatives of � and �0

with respect to positional and thermal parameters, an ortho-

gonal system of coordinates is used. There is no loss of

generality in this; the corrections can easily be converted back

to the crystal frame.

All these equations hold for a residual of form (7) when Lh

= Lÿh, which is true whenever there is no anomalous scatterer

in the crystal. For the gradient calculations there is no need for

the requirement of form (7). To account for anomalous scat-

tering, the residual could be modi®ed to L0h = �Lh + Lÿh�=2

which already satis®es the required condition. However, for

this case, the likelihood function itself should be modi®ed to

take into account the correlation between Fh and Fÿh. Treat-

ment of this case is outside the scope of this paper. The

derivation of the necessary maximum-likelihood equations

and their implementation are under development.

The necessary coef®cients derived from ÿlog likelihood

function for the above equations have been given by

Murshudov et al. (1997). They are

@L

@Ah

� � @L
@Bh

� 2
�AjEcj exp��'c� ÿmcombjEoj exp��'comb�

�h

� �A

�1=2
c :

�17�

This function has the same symmetry as the original space

group.

For the second-derivative map,

@2L

@Ah

� @
2L

@Bh

�
�

4

�
ÿ 4jEoj2

�2
�1ÿm2

comb�
�
�2

A

�c

: �18�

This function has the same symmetry as the Patterson function

of the original space group.

To apply the above equations, the derivatives of � and �0

with respect to positional and thermal parameters need to be

calculated. In the following discussions, the subscript ig will be

dropped, but it is important to remember that the equations

hold for each of the Gaussian terms (®ve for the atoms and 15

or 25 for the atom convolutions).

The determinant of U is

jUj � U11U22U33 ÿ U11U2
23 ÿ U22U2

13

ÿ U33U2
12 � 2U12U13U23: �19�

The minors of U are

Um
11 � U22U33 ÿ U2

23

Um
22 � U11U33 ÿ U2

13

Um
33 � U11U22 ÿ U2

12

Um
12 � U13U23 ÿ U33U12

Um
13 � U12U23 ÿ U22U13

Um
23 � U12U13 ÿ U11U23: �20�

Because of the symmetry of U,

V � Uÿ1
ij � Um

ij =jUj: �21�
Using Uij as elements of the anisotropic U tensor for the

derivatives,

@�

@xi

� ÿ 1

�2��1:5jUj0:5
P

k

Vikxk exp

�
ÿ xTUÿ1x

2

�
;

@�

@Uij

� ÿ 0:5

�2��1:5jUj0:5
��
@jUj=@Uij

jUj
�
�P

ts

@Vts

@Uij

xtxs

�
� exp

�
ÿ xTUÿ1x

2

�
: �22�

For the second derivatives,

@2�0

@xi@xj

� 1

�2��1:5jUj0:5
�
ÿ Vij �

P
kl

VikVilxkxl

�
� exp

�
ÿ xTUÿ1x

2

�
;

@2�0

@Uij@Ukl

� 0:5

�2��1:5jUj0:5
��

1:5

�
@jUj=@Uij

jUj
��

@jUj=@Ukl

jUj
�

ÿ @2jUj
@Uij@Ukl

1

jUj
�

exp

�
ÿ xTUÿ1x

2

�
�P

ts

�
0:5

�
@jUj=@Uij

jUj
�
@Vts

@Ukl

� 0:5

�
@jUj=@Ukl

jUj
�
@Vts

@Uij

ÿ @2Vts

@Uij@Ukl

�
� xtxs exp

�
ÿ xTUÿ1x

2

�
� 0:5

P
tspq

�
@Vts

@Uij

@Vpq

@Ukl

xtxsxpxq

�
� exp

�
ÿ xTUÿ1x

2

��
: �23�

Coef®cients of the zero-order and fourth-order xtxsxpxq can be

calculated in a straightforward way. The second-order terms

for the second derivatives with respect to elements of aniso-

tropic U (EAU) can be simpli®ed further. Denoting the

coef®cients of the second-order terms as Cts
�ij��kl� and using the

fact that Vts � Um
ts =jUj it can be shown that

Cts
�ij��kl� � Vts

�
ÿ 3:0

�
@jUj=@Uij

jUj
��

@jUj=@Ukl

jUj
�

� 1

jUj
@2jUj
@Uij@Ukl

�
� 1

jUj
�

1:5

�
@Um

ts

@Uij

�
@jUj=@Ukl

jUj
�

� @U
m
ts

@Ukl

�
@jUj=@Uij

jUj
��
ÿ @2Um

ts

@Uij@Ukl

�
:

�24�

Because of symmetry, the coef®cients for t 6� s must be

multiplied by two. All elements in (24) can easily be calculated

using the determinant, minors and inversion of the matrix,

@jUj=@Uij

jUj � CijVij; �25�
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where Cij = 1 for i = j and Cij = 2 for i 6� j. The derivative of the

elements of the inverted matrix with respect to EAU can be

written:

@Vts

@Ukl

� 1

jUj
@Um

ts

Ukl

ÿ
�

Vts

@jUj
@Uij

=jUj
�
: �26�

To calculate derivatives, ®rstly the terms F��@L=@A� +

�@L=@B�� or F��@2L=@A2� + �@2L=@B2�� could be convoluted

with �, xi�, xixj� etc. for each Gaussian; secondly, these

convolutions could be summed with the coef®cients given in

(13) and (15) and, ®nally, they could be summed over all the

Gaussians. To achieve the required precision for the convo-

lutions, either FFTs calculated on ®ne grids or interpolation

techniques (see, for example, Press et al., 1986) could be used.

In the current applications, we use a block-diagonal

approximation to the second derivatives of the maximum-

likelihood equations, i.e. a 6 � 6 block for the anisotropic U

and a 3 � 3 block for the positional parameters. For the

geometric information, both the diagonal and the non-diag-

onal terms are calculated.

APPENDIX B
Anisotropic U values as a vector

Applying the transformation matrix R to an atomic position

(xnew = Rx) requires that its anisotropic U tensor should be

transformed to Unew = RURT . Carrying out the matrix

multiplication RURT and remembering that U is symmetric,

with only six independent elements i.e. Uij = Uji, means that

RURT can be described as Ruu where Ru is a 6 � 6 matrix

which pre-multiplies the vector u of length 6.

We can write

Ru
ij � RjiRji

Ru
i4 � 2Ri1Ri2

Ru
i5 � 2Ri1Ri3

Ru
i6 � 2Ri2Ri3

Ru
4i � R1iR2i

Ru
5i � R1iR3i

Ru
6i � R2iR3i

Ru
44 � R11R22 � R12R21

Ru
54 � R11R32 � R12R31

Ru
64 � R21R32 � R22R31

Ru
45 � R11R23 � R13R21

Ru
55 � R11R33 � R13R31

Ru
65 � R21R33 � R23R31

Ru
46 � R12R23 � R13R22

Ru
56 � R12R33 � R13R32

Ru
66 � R22R33 � R23R32: �27�

Here, we use the following representation of the U vector:

ui � Uii, u4 � U12, u5 � U13, u6 � U23.

This representation of U values simpli®es the application of

the differential operator. If xnew = Rx and unew = Ruu then for

®rst derivatives (@=@xnew) = RT�@=@x� and �@=@unew� =

RuT�@=@u�. The same kind of transformation can be performed

for second derivatives. The same kind of transformation for u

could be derived if RT were replaced by any other transfor-

mation matrix P.
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